\qquad
\qquad Date \qquad

Reteaching

Trigonometry

Use trigonometric ratios to find the length of a side of a right triangle.
$\sin A=\frac{\text { opposite }}{\text { hypotenuse }}$
$\cos A=\frac{\text { adjacent }}{\text { hypotenuse }}$
$\tan A=\frac{\text { opposite }}{\text { adjacent }}$

Problem

What is the value of x to the nearest tenth?
First, identify the information given.
The angle measure is 29 . The length of the side opposite the
 angle is x. The length of the hypotenuse is 13 .

$$
\begin{aligned}
\sin 29^{\circ} & =\frac{\text { opposite }}{\text { hypotenuse }} & & \text { Use the sine ratio. } \\
\sin 29^{\circ} & =\frac{x}{13} & & \text { Substitute. } \\
13\left(\sin 29^{\circ}\right) & =x & & \text { Multiply by } 13 . \\
6.3 & \approx x & & \text { Solve for } x \text { using a calculator. }
\end{aligned}
$$

Exercises

Find the value of t to the nearest tenth.

1.

2.

Find the missing lengths in each right triangle. Round your answers to the nearest tenth.
3.

4.

5.

\qquad
\qquad Date \qquad

Reteaching (continued)

Trigonometry
When you know the length of one or more sides in a right triangle and are looking for the angle measures of the triangle, you should use inverse trigonometric ratios.
$\sin ^{-1}(x)$ is the measure of the angle where $\frac{\text { opposite }}{\text { hypotenuse }}=x$.
Similarly, $\cos ^{-1}(x)$ is the measure of the angle where $\frac{\text { adjacent }}{\text { hypotenuse }}=x$, and $\tan ^{-1}(x)$ is the measure of the angle where $\frac{\text { opposite }}{\text { adjacent }}=x$.

Problem

Find the measure of $\angle T$ to the nearest degree.
First, identify the information given. The length of the side adjacent to the angle is 33 . The length of the hypotenuse is 55 .

$$
\begin{aligned}
\cos T & =\frac{\text { adjacent }}{\text { hypotenuse }} & & \text { Use the cosine ratio. } \\
\cos T & =\frac{33}{55}=0.6 & & \text { Fill in known information. } \\
T & =\cos ^{-1}(0.6) & & \text { Use the inverse of the cosine ratio. } \\
T & \approx 53^{\circ} & & \text { Use a calculator to solve. }
\end{aligned}
$$

The measure of $\angle T$ is about 53 .

Exercises

Find $m \angle M$ to the nearest degree.
6.

7.

8.

9.

10.

11.

