1. Triangles ABC and DEF are similar.

- a. Find the ratio of the side opposite angle B to the hypotenuse in $\triangle ABC$.
- b. What angle in $\triangle DEF$ corresponds to angle B?
- c. Find the ratio of the side opposite angle E to the hypotenuse in ΔDEF .
- d. How does the ratio in part (a) compare to the ratio in part (c)? they are the same
- e. Which trigonometric ratio does this represent? sine.
- 2. Ricardo is standing 75 feet away from the base of a building. The angle of elevation from the ground where Ricardo is standing to the top of the building is 32°.

$$tan(32) = \frac{2}{75}$$

75 $tan(32) = 2$
46.865 = 2

What is x, the height of the building, to the nearest tenth of a foot?

$$X = 46.9 G$$

3. An airplane is at an altitude of 5,900 feet. The airplane descends at an angle of 3°.

 $sin(3) = \frac{5900}{x}$ x = 5900 X= 112733.2

About how far will the airplane travel in the air until it reaches the ground?

4. Triangle ABC is a right triangle.

$$\sin \theta = \frac{5}{13}$$

$$\sin^{-1}(\frac{5}{13}) = \theta$$

What is the best approximation for $m \angle C$?

5. In right triangle ABC, angle A and angle B are complementary angles. The value of $\cos A$ is $\frac{5}{13}$. What is the value of $\sin B$?

$$A.\frac{5}{13}$$

$$C.\frac{13}{12}$$

B.
$$\frac{12}{13}$$

D.
$$\frac{13}{5}$$

6. Triangle ABC is given below.

What is the value of $\cos A$?

$$\begin{bmatrix} A. \frac{3}{5} \\ C. \frac{4}{5} \end{bmatrix}$$

D.
$$\frac{5}{3}$$

7. In right triangle HJK, \angle J is a right angle and tan \angle H = 1. Which statement about triangle HJK must be true?

A.
$$\sin \angle H = \frac{1}{2}$$

B.
$$\sin ZH = 1$$

C.
$$\sin \angle H = \cos \angle H$$

D.
$$\sin \angle H = \frac{1}{\cos \angle H}$$

8. A 12-foot ladder is leaning against a building at a 75° angle with the ground.

Which equation can be used to find how high the ladder reaches up the side of the building?

A.
$$\sin 75^{\circ} = \frac{12}{x}$$

B.
$$\tan 75^\circ = \frac{12}{x}$$

C.
$$\cos 75^{\circ} = \frac{x}{12}$$

D.
$$\sin 75^{\circ} = \frac{x}{12}$$

9. A hot air balloon is 1,200 feet above the ground. The angle of depression from the basket of the hot air balloon to the base of a monument is 54°.

Which equation can be used to find the distance, d, in feet, from the basket of the hot air balloon to the base of the monument?

A.
$$\sin 54^\circ = \frac{d}{1200}$$

B.
$$\sin 54^{\circ} = \frac{1200}{d}$$

C.
$$\cos 54^\circ = \frac{d}{1200}$$

D.
$$\cos 54^\circ = \frac{1200}{d}$$