- 1. Draw the image of each figure, using the given transformation.
- a. Use the translation $(x, y) \rightarrow (x 3, y + 1)$.

c. Reflect across the line y = x.

b. Reflect across the x-axis.

d. Identify the vertices. The reflection image of each point (x, y) across the line y = -x is (-y, -x).

2. Specify a sequence of transformations that will map ABCD to PQRS in each case.

- 3. Describe every transformation that maps each given figure to itself.

4. Describe every transformation that maps this figure to itself: a regular hexagon (6 sides) that is centered about the origin and that has a vertex at (4, 0).

5. A regular pentagon is centered about the origin and has a vertex at (0, 4).

Which transformation maps the pentagon to itself?

A. a reflection across line m
B. a reflection across the x-axis
C. a clockwise rotation of 100° about the origin

D. a clockwise rotation of 144° about the origin

6. A parallelogram has vertices at (0, 0), (0, 6), (4, 4), and (4, -2).

Which transformation maps the parallelogram to itself?

A. a reflection across the line x = 2

B. a reflection across the line y = 2

C. a rotation of 180° about the point (2, 2)

D. a rotation of 180° about the point (0, 0)

7. Which sequence of transformations maps ^ABC to ^RST?

A. Reflect \triangle ABC across the line x = -1. Then translate the result 1 unit down.

B. Reflect \triangle ABC across the line x = -1. Then translate the result 5 units down.

e. Translate △ABC 6 units to the right. Then rotate the result 90° clockwise about the point (1, 1).

D. Translate ^ABC 6 units to the right. Then rotate the result 90° counterclockwise about the point (1, 1).